

IPR-B

pressure regulator spring loaded

Notified Body number 1370

IPR regulators are a new line of pressure regulators - direct operating type - designed to guarantee a high regulation accuracy and an utmost easiness in use.

These devices are usually used in distribution and industrial systems and are designed to be installed in regulation units of canalized nets of natural, manufactured and lpg gas or other non corrosive gases, filtered at first.

STF KEMIM S.r.I.

strada provinciale 33 Km. 0,6 20080 - Vernate (MI) Tel. (39).02.9052621 Fax.(39).02.9052631

E-mail: stfkemim@samgasgroup.it www.samgasgroup.it

IPR -B

The mod. **IPR** pressure regulators are "fail to open" type, which means that in case of malfunction due to breaking of the main diaphragm or as a result of a lack of impulse downstream, the regulator will open up completely.

The mod. **IPR** pressure regulators are "top entry" type, which allows for maintenance operations without having to remove the body from the pipes.

Modular device allows for variation in its configuration even when already installed in stream. In addition, the modules can be easily disassembled for eventual controls.

Technical features

body - spheroidal cast iron GJS 40-18U LT

- steel ASTM A352 LCB

covers - aluminium (EN AB 46100)

- steel (UNI EN 10028)

• diaphragms synthetic rubber with cloth reinforcement

seats stainless steelsprings stainless steel

counterbalanced regulating device

diaphragm shock adsorber (on IPR 300 & 600)

built-in shut-off valve

built-in relief valve (on IPR 75 & 150)

anti-pumping device

• large range of regulated pressure

prompt action

			IPR -B 75	IPR -B 150	IPR -B 300		IPR -B 600			
Diameters			1" x 1"	1" x 1"1/2	DN32	DN40	DN40	DN50		
Connections			Rp (IS	O 7/1)	PN 16 & PN 25 (UNI2240) ANSI 150 RF (B 16.5)					
Maximum inlet pressure		[bar]	[bar] 5 & 19							
Outlet pressure range		[mbar]	10 ÷ 4000							
Regulating class	RG	[%]	up to 5							
Closing pressure class	SG	[%]	up to 10							
Working temperature	T	[°C]	-20 ÷ 60							
Valve Coefficient	lve Coefficient Cg			281	459	574	928	1160		

IPR -B

Versions available

Dimensioning

.BP

for an inlet pressure range of 0,5 ÷ 5 bar for an outlet pressure range of 10 ÷ 150 mbar

.MP

for an inlet pressure range of $0.5 \div 5$ bar for an outlet pressure range of $150 \div 500$ mbar

ΔР

for an inlet pressure range of 0,5 ÷ 5 bar for an outlet pressure range of 500 ÷ 4000 mbar

.APS (non counterbalanced)

for an inlet pressure range of 2 ÷ 19 bar for an outlet pressure range of 500 ÷ 4000 mbar

.APA

for an inlet pressure range of 2 ÷ 19 bar for an outlet pressure range of 500 ÷ 4000 mbar

The choice of the regulator is made using the **Cg** valve coefficient .

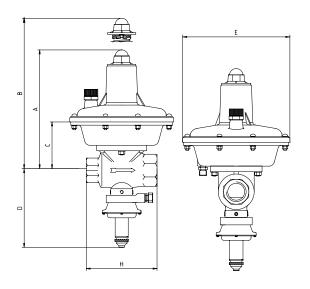
Cg coefficient is numerically equivalent to the value of air flow in Scfh in critical conditions with full open regulator operating with an upstream pressure of 1 psia and a temperature of 15 °C.

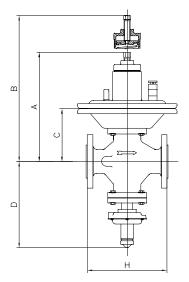
Flow rates with maximum opening at different operating conditions can be calculated as follows:

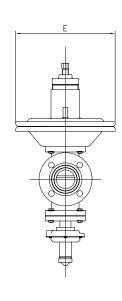
a. in non critical conditions (when Pe < 2 Pa)

$$Q = 0.526 * Cg * Pe * \sin \left(93.5 * \sqrt{\frac{(Pe - Pa)}{Pe}} \right)^{Deg}$$

b. in <u>critical</u> conditions (when $Pe \ge 2 Pa$)


$$Q = 0.526 * Cq * Pe$$


where:


Q = capacity [Stm³/h]

Pe = absolute upstream pressure [bar]

Pa = absolute downstream pressure [bar]

								Е								
	1" x 1"	1" x 1"1/2	DN 32	DN 40	DN 50	Α	В	С	D	F	G		weight			
	[mm.]											[mm.]			[Kg.]	
-B 75	100					220	385	90	135			189	189	189 TR		
-B /3	100			220 365 90 13	133	55 =	=	BP	MP	AP - APS	4,5					
D 150		120	205	00 1	125			189	189	189 TR	4.5					
-B 150		130				220	385	90	135	=	=	BP	MP	AP - APA	4,5	
D 200			102	222		400	450	0 151	F1 240	40 =	= 175	310	310	232	25	
-B 300			183	223		400	450	151	240			BP	MP	AP - APA		
D (00				222	25.4	400	4/0	0 4/5	250		= 175	310	310	232	22	
-B 600				223	254	400	460	165	250	=		BP	MP	AP - APA	32	